Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inhal Toxicol ; 36(2): 106-123, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38477125

RESUMO

OBJECTIVE: Occupational exposure to respirable crystalline silica (cSiO2) has been linked to lupus development. Previous studies in young lupus-prone mice revealed that intranasal cSiO2 exposure triggered autoimmunity, preventable with docosahexaenoic acid (DHA). This study explores cSiO2 and DHA effects in mature lupus-prone adult mice, more representative of cSiO2-exposed worker age. METHODS: Female NZBWF1 mice (14-week old) were fed control (CON) or DHA-supplemented diets. After two weeks, mice were intranasally instilled saline (VEH) or 1 mg cSiO2 weekly for four weeks. Cohorts were then analyzed 1- and 5-weeks postinstillation for lung inflammation, cell counts, chemokines, histopathology, B- and T-cell infiltration, autoantibodies, and gene signatures, with results correlated to autoimmune glomerulonephritis onset. RESULTS: VEH/CON mice showed no pathology. cSiO2/CON mice displayed significant ectopic lymphoid tissue formation in lungs at 1 week, increasing by 5 weeks. cSiO2/CON lungs exhibited elevated cellularity, chemokines, CD3+ T-cells, CD45R + B-cells, IgG + plasma cells, gene expression, IgG autoantibodies, and glomerular hypertrophy. DHA supplementation mitigated all these effects. DISCUSSION: The mature adult NZBWF1 mouse used here represents a life-stage coincident with immunological tolerance breach and one that more appropriately represents the age (20-30 yr) of cSiO2-exposed workers. cSiO2-induced robust pulmonary inflammation, autoantibody responses, and glomerulonephritis in mature adult mice, surpassing effects observed previously in young adults. DHA at a human-equivalent dosage effectively countered cSiO2-induced inflammation/autoimmunity in mature mice, mirroring protective effects in young mice. CONCLUSION: These results highlight life-stage significance in this preclinical lupus model and underscore omega-3 fatty acids' therapeutic potential against toxicant-triggered autoimmune responses.


Assuntos
Ácidos Graxos Ômega-3 , Glomerulonefrite , Pneumonia , Feminino , Camundongos , Humanos , Animais , Ácidos Graxos Ômega-3/toxicidade , Autoimunidade , Dióxido de Silício/toxicidade , Pneumonia/induzido quimicamente , Glomerulonefrite/induzido quimicamente , Glomerulonefrite/metabolismo , Glomerulonefrite/patologia , Ácidos Docosa-Hexaenoicos/toxicidade , Quimiocinas/toxicidade , Autoanticorpos , Imunoglobulina G
2.
Front Immunol ; 15: 1275265, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38361937

RESUMO

Introduction: Workplace exposure to respirable crystalline silica (cSiO2) has been epidemiologically linked to lupus. Consistent with this, repeated subchronic intranasal cSiO2 instillation in lupus-prone NZBWF1 mice induces inflammation-/autoimmune-related gene expression, ectopic lymphoid tissue (ELT), autoantibody (AAb) production in the lung within 5 to 13 wk followed systemic AAb increases and accelerated onset and progression of glomerulonephritis within 13 to 17 wk. Interestingly, dietary docosahexaenoic acid (DHA) supplementation suppresses these pathologic effects, but the underlying molecular mechanisms remain unclear. Methods: This study aimed to test the hypothesis that dietary DHA supplementation impacts acute transcriptional and autoantibody responses in the lungs of female NZBWF1 mice 1 and 4 wk after a single high-dose cSiO2 challenge. Groups of mice were initially fed a control (Con) diet or a DHA-containing diet (10 g/kg). Cohorts of Con- and DHA-fed were subjected to a single intranasal instillation of 2.5 mg cSiO2 in a saline vehicle (Veh), while a Con-fed cohort was instilled with Veh only. At 1 and 4 wk post-instillation (PI), we compared cSiO2's effects on innate-/autoimmune-related gene expression and autoantibody (AAb) in lavage fluid/lungs of Con- and DHA-fed mice and related these findings to inflammatory cell profiles, histopathology, cell death, and cytokine/chemokine production. Results: DHA partially alleviated cSiO2-induced alterations in total immune cell and lymphocyte counts in lung lavage fluid. cSiO2-triggered dead cell accumulation and levels of inflammation-associated cytokines and IFN-stimulated chemokines were more pronounced in Con-fed mice than DHA-fed mice. Targeted multiplex transcriptome analysis revealed substantial upregulation of genes associated with autoimmune pathways in Con-fed mice in response to cSiO2 that were suppressed in DHA-fed mice. Pathway analysis indicated that DHA inhibited cSiO2 induction of proinflammatory and IFN-regulated gene networks, affecting key upstream regulators (e.g., TNFα, IL-1ß, IFNAR, and IFNγ). Finally, cSiO2-triggered AAb responses were suppressed in DHA-fed mice. Discussion: Taken together, DHA mitigated cSiO2-induced upregulation of pathways associated with proinflammatory and IFN-regulated gene responses within 1 wk and reduced AAb responses by 4 wk. These findings suggest that the acute short-term model employed here holds substantial promise for efficient elucidation of the molecular mechanisms through which omega-3 PUFAs exert protective effects against cSiO2-induced autoimmunity.


Assuntos
Ácidos Docosa-Hexaenoicos , Pulmão , Humanos , Feminino , Camundongos , Animais , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Docosa-Hexaenoicos/metabolismo , Pulmão/patologia , Inflamação/metabolismo , Citocinas/metabolismo , Quimiocinas/metabolismo , Autoanticorpos/metabolismo , Suplementos Nutricionais , Dióxido de Silício/farmacologia
3.
Front Immunol ; 14: 1124910, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875087

RESUMO

Introduction: Lipopolysaccharide (LPS)-accelerated autoimmune glomerulonephritis (GN) in NZBWF1 mice is a preclinical model potentially applicable for investigating lipidome-modulating interventions against lupus. LPS can be expressed as one of two chemotypes: smooth LPS (S-LPS) or rough LPS (R-LPS) which is devoid of O-antigen polysaccharide sidechain. Since these chemotypes differentially affect toll-like receptor 4 (TLR4)-mediated immune cell responses, these differences may influence GN induction. Methods: We initially compared the effects of subchronic intraperitoneal (i.p.) injection for 5 wk with 1) Salmonella S-LPS, 2) Salmonella R-LPS, or 3) saline vehicle (VEH) (Study 1) in female NZBWF1 mice. Based on the efficacy of R-LPS in inducing GN, we next used it to compare the impact of two lipidome-modulating interventions, ω-3 polyunsaturated fatty acid (PUFA) supplementation and soluble epoxide hydrolase (sEH) inhibition, on GN (Study 2). Specifically, effects of consuming ω-3 docosahexaenoic acid (DHA) (10 g/kg diet) and/or the sEH inhibitor 1-(4-trifluoro-methoxy-phenyl)-3-(1-propionylpiperidin-4-yl) urea (TPPU) (22.5 mg/kg diet ≈ 3 mg/kg/day) on R-LPS triggering were compared. Results: In Study 1, R-LPS induced robust elevations in blood urea nitrogen, proteinuria, and hematuria that were not evident in VEH- or S-LPS-treated mice. R-LPS-treated mice further exhibited kidney histopathology including robust hypertrophy, hyperplasia, thickened membranes, lymphocytic accumulation containing B and T cells, and glomerular IgG deposition consistent with GN that was not evident in VEH- or SLPS-treated groups. R-LPS but not S-LPS induced spleen enlargement with lymphoid hyperplasia and inflammatory cell recruitment in the liver. In Study 2, resultant blood fatty acid profiles and epoxy fatty acid concentrations reflected the anticipated DHA- and TPPU-mediated lipidome changes, respectively. The relative rank order of R-LPS-induced GN severity among groups fed experimental diets based on proteinuria, hematuria, histopathologic scoring, and glomerular IgG deposition was: VEH/CON< R-LPS/DHA ≈ R-LPS/TPPU<<< R-LPS/TPPU+DHA ≈ R-LPS/CON. In contrast, these interventions had modest-to- negligible effects on R-LPS-induced splenomegaly, plasma antibody responses, liver inflammation, and inflammation-associated kidney gene expression. Discussion: We show for the first time that absence of O-antigenic polysaccharide in R-LPS is critical to accelerated GN in lupus-prone mice. Furthermore, intervention by lipidome modulation through DHA feeding or sEH inhibition suppressed R-LPS-induced GN; however, these ameliorative effects were greatly diminished upon combining the treatments.


Assuntos
Glomerulonefrite , Lipopolissacarídeos , Feminino , Animais , Camundongos , Epóxido Hidrolases , Hematúria , Hiperplasia , Lipidômica , Inflamação , Antígenos O , Ácidos Graxos , Ácidos Graxos Insaturados , Suplementos Nutricionais , Imunoglobulina G
4.
Front Immunol ; 13: 972108, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36341330

RESUMO

Autoimmune diseases can be triggered by environmental toxicants such as crystalline silica dust (cSiO2). Here, we characterized the dose-dependent immunomodulation and toxicity of the glucocorticoid (GC) prednisone in a preclinical model that emulates onset and progression of cSiO2-triggered lupus. Two cohorts of 6-wk-old female NZBWF1 mice were fed either control AIN-93G diet or one of three AIN-93G diets containing prednisone at 5, 15, or 50 mg/kg diet which span human equivalent oral doses (HED) currently considered to be low (PL; 5 mg/d HED), moderate (PM; 14 mg/d HED), or high (PH; 46 mg/d HED), respectively. At 8 wk of age, mice were intranasally instilled with either saline vehicle or 1 mg cSiO2 once weekly for 4 wk. The experimental plan was to 1) terminate one cohort of mice (n=8/group) 14 wk after the last cSiO2 instillation for pathology and autoimmunity assessment and 2) to maintain a second cohort (n=9/group) to monitor glomerulonephritis development and survival. Mean blood concentrations of prednisone's principal active metabolite, prednisolone, in mice fed PL, PM, and PH diets were 27, 105, 151 ng/ml, respectively, which are consistent with levels observed in human blood ≤ 12 h after single bolus treatments with equivalent prednisone doses. Results from the first cohort revealed that consumption of PM, but not PL diet, significantly reduced cSiO2-induced pulmonary ectopic lymphoid structure formation, nuclear-specific AAb production, inflammation/autoimmune gene expression in the lung and kidney, splenomegaly, and glomerulonephritis in the kidney. Relative to GC-associated toxicity, PM diet, but not PL diet, elicited muscle wasting, but these diets did not affect bone density or cause glucosuria. Importantly, neither PM nor PL diet improved latency of cSiO2-accelerated death. PH-fed mice in both cohorts displayed robust GC-associated toxicity including body weight loss, reduced muscle mass, and extensive glucosuria 7 wk after the final cSiO2 instillation requiring their early removal from the study. Taken together, our results demonstrate that while moderate doses of prednisone can reduce important pathological endpoints of cSiO2-induced autoimmunity in lupus-prone mice, such as upstream ectopic lymphoid structure formation, these ameliorative effects come with unwanted GC toxicity, and, crucially, none of these three doses extended survival time.


Assuntos
Doenças Autoimunes , Glomerulonefrite , Humanos , Camundongos , Feminino , Animais , Recém-Nascido , Autoimunidade , Prednisona/farmacologia , Glucocorticoides/farmacologia , Modelos Animais de Doenças , Dióxido de Silício/efeitos adversos , Doenças Autoimunes/induzido quimicamente
5.
Toxicol Lett ; 356: 21-32, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34863859

RESUMO

Although exposure to ambient particulate matter (PM) is linked to asthma, the health effects of co-existing vapor-phase organic pollutants (vapor) and their combined effects with PM on this disease are poorly understood. We used a murine asthma model to test the hypothesis that exposure to vapor would enhance allergic sensitization and this effect would be further strengthened by co-existing PM. We found that vapor and PM each individually exerted adjuvant effects on OVA sensitization. Co-exposure to vapor and PM during sensitization further enhanced allergic lung inflammation and OVA-specific antibody production which was accompanied by pulmonary cytokine/chemokine milieu that favored T-helper 2 immunity (i.e. increased IL-4, downregulation of Il12a and Ifng, and upregulation of Ccl11 and Ccl8). TNFα, IL-6, Ccl12, Cxcl1 and detoxification/antioxidant enzyme responses in the lung were pollutant-dependent. Inhibition of lipopolysaccharide-induced IL-12 secretion from primary antigen-presenting dendritic cells correlated positively with vapor's oxidant potential. In conclusion, concurrent exposure to vapor and PM led to significantly exaggerated adjuvant effects on allergic lung inflammation which were more potent than that of each pollutant type alone. These findings suggest that the effects of multi-component air pollution on asthma may be significantly underestimated if research only focuses on a single air pollutant (e.g., PM).


Assuntos
Asma/induzido quimicamente , Citocinas/metabolismo , Hipersensibilidade/etiologia , Material Particulado/toxicidade , Compostos Orgânicos Voláteis/toxicidade , Animais , Citocinas/genética , Regulação para Baixo , Interações Medicamentosas , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina/toxicidade , Tamanho da Partícula , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Células Th2 , Regulação para Cima
6.
Free Radic Biol Med ; 178: 347-359, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34896589

RESUMO

γ-Tocopherol (γT) is a major form of vitamin E in the US diet and the second most abundant vitamin E in the blood and tissues, while α-tocopherol (αT) is the predominant vitamin E in tissues. During the last >25 years, research has revealed that γT has unique antioxidant and anti-inflammatory activities relevant to disease prevention compared to αT. While both compounds are potent lipophilic antioxidants, γT but not αT can trap reactive nitrogen species by forming 5-nitro-γT, and appears to show superior protection of mitochondrial function. γT inhibits ionophore-stimulated leukotrienes by blocking 5-lipoxygenase (5-LOX) translocation in leukocytes, decreases cyclooxygenase-2 (COX-2)-catalyzed prostaglandins in macrophages and blocks the growth of cancer cells but not healthy cells. For these activities, γT is stronger than αT. Moreover, γT is more extensively metabolized than αT via cytochrome P-450 (CYP4F2)-initiated side-chain oxidation, which leads to formation of metabolites including 13'-carboxychromanol (13'-COOH) and carboxyethyl-hydroxychroman (γ-CEHC). 13'-COOH and γ-CEHC are shown to be the predominant metabolites found in feces and urine, respectively. Interestingly, γ-CEHC has natriuretic activity and 13'-COOH inhibits both COX-1/-2 and 5-LOX activity. Consistent with these mechanistic findings of γT and metabolites, studies show that supplementation of γT mitigates inflammation and disease symptoms in animal models with induced inflammation, asthma and cancer. In addition, supplementation of γT decreased inflammation markers in patients with kidney diseases and mild asthma. These observations support that γT may be useful against inflammation-associated diseases.


Assuntos
Antioxidantes , gama-Tocoferol , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Cromanos , Dieta , Gerenciamento Clínico , Humanos , Vitamina E , alfa-Tocoferol
8.
Front Immunol ; 12: 653464, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33897700

RESUMO

Workplace exposure to respirable crystalline silica dust (cSiO2) has been etiologically linked to the development of lupus and other human autoimmune diseases. Lupus triggering can be recapitulated in female NZBWF1 mice by four weekly intranasal instillations with 1 mg cSiO2. This elicits inflammatory/autoimmune gene expression and ectopic lymphoid structure (ELS) development in the lung within 1 week, ultimately driving early onset of systemic autoimmunity and glomerulonephritis. Intriguingly, dietary supplementation with docosahexaenoic acid (DHA), an ω-3 polyunsaturated fatty acid (PUFA) found in fish oil, beginning 2 week prior to cSiO2 challenge, prevented inflammation and autoimmune flaring in this novel model. However, it is not yet known how ω-3 PUFA intervention influences established autoimmunity in this murine model of toxicant-triggered lupus. Here we tested the hypothesis that DHA intervention after cSiO2-initiated intrapulmonary autoimmunity will suppress lupus progression in the NZBWF1 mouse. Six-week old NZWBF1 female mice were fed purified isocaloric diet for 2 weeks and then intranasally instilled with 1 mg cSiO2 or saline vehicle weekly for 4 consecutive weeks. One week after the final instillation, which marks onset of ELS formation, mice were fed diets supplemented with 0, 4, or 10 g/kg DHA. One cohort of mice (n = 8/group) was terminated 13 weeks after the last cSiO2 instillation and assessed for autoimmune hallmarks. A second cohort of mice (n = 8/group) remained on experimental diets and was monitored for proteinuria and moribund criteria to ascertain progression of glomerulonephritis and survival, respectively. DHA consumption dose-dependently increased ω-3 PUFA content in the plasma, lung, and kidney at the expense of the ω-6 PUFA arachidonic acid. Dietary intervention with high but not low DHA after cSiO2 treatment suppressed or delayed: (i) recruitment of T cells and B cells to the lung, (ii) development of pulmonary ELS, (iii) elevation of a wide spectrum of plasma autoantibodies associated with lupus and other autoimmune diseases, (iv) initiation and progression of glomerulonephritis, and (v) onset of the moribund state. Taken together, these preclinical findings suggest that DHA supplementation at a human caloric equivalent of 5 g/d was an effective therapeutic regimen for slowing progression of established autoimmunity triggered by the environmental toxicant cSiO2.


Assuntos
Ácidos Graxos Ômega-3/administração & dosagem , Lúpus Eritematoso Sistêmico/dietoterapia , Doenças Profissionais/dietoterapia , Dióxido de Silício/toxicidade , Animais , Suplementos Nutricionais , Modelos Animais de Doenças , Progressão da Doença , Feminino , Humanos , Exposição por Inalação/efeitos adversos , Lúpus Eritematoso Sistêmico/induzido quimicamente , Lúpus Eritematoso Sistêmico/imunologia , Camundongos , Doenças Profissionais/induzido quimicamente , Doenças Profissionais/imunologia , Dióxido de Silício/administração & dosagem
9.
Front Immunol ; 12: 635138, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33732257

RESUMO

Occupational exposure to crystalline silica (cSiO2) is etiologically associated with systemic lupus erythematosus (lupus) and other autoimmune diseases. cSiO2's autoimmune effects in humans can be mimicked chronically in female lupus-prone NZBWF1 mice following repeated exposure to the particle. However, the immediate and short-term effects of cSiO2 in this widely used model of autoimmune disease are not well-understood. In the present study, we tested the hypothesis that a single acute cSiO2 dose triggers early presentation of cellular, histopathological, transcriptomic, and protein biomarkers of inflammation and autoimmunity in lupus-prone mice. Eight-week old female NZBWF1 mice were intranasally instilled once with 2.5 mg cSiO2 or saline vehicle and necropsied at 1, 7, 14, 21, and 28 d post-instillation (PI). Analyses of bronchoalveolar lavage fluid (BALF) and lung tissue revealed that by 7 d PI, acute cSiO2 exposure persistently provoked: (i) robust recruitment of macrophages, neutrophils, and lymphocytes into the alveoli, (ii) cell death as reflected by increased protein, double-stranded DNA, and lactate dehydrogenase activity, (iii) elevated secretion of the cytokines IL-1α, IL-1ß, IL-18, TNF-α, IL-6, MCP-1, and B cell activation factor (BAFF), and (iv) upregulation of genes associated with chemokines, proinflammatory cytokines, lymphocyte activation, and type I interferon signaling. The appearance of these endpoints was subsequently followed by the emergence in the lung of organized CD3+ T cells (14 d PI) and CD45R+ B cells (21 d PI) that were indicative of ectopic lymphoid structure (ELS) development. Taken together, acute cSiO2 exposure triggered a rapid onset of autoimmune disease pathogenesis that was heralded in the lung by unresolved inflammation and cell death, proinflammatory cytokine production, chemokine-driven recruitment of leukocytes, an interferon response signature, B and T cell activation, and ELS neogenesis. This short-term murine model provides valuable new insight into potential early mechanisms of cSiO2-induced lupus flaring and, furthermore, offers a rapid venue for evaluating interventions against respirable particle-triggered inflammation and autoimmunity.


Assuntos
Autoimunidade , Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Pulmão/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Pneumonia/imunologia , Estruturas Linfoides Terciárias/imunologia , Animais , Autoimunidade/genética , Linfócitos B/imunologia , Linfócitos B/metabolismo , Quimiotaxia de Leucócito , Citocinas/genética , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Pulmão/metabolismo , Pulmão/patologia , Lúpus Eritematoso Sistêmico/genética , Ativação Linfocitária , Camundongos Endogâmicos NZB , Pneumonia/induzido quimicamente , Pneumonia/genética , Pneumonia/metabolismo , Dióxido de Silício , Linfócitos T/imunologia , Linfócitos T/metabolismo , Estruturas Linfoides Terciárias/metabolismo , Estruturas Linfoides Terciárias/patologia , Fatores de Tempo , Transcriptoma
10.
J Toxicol Environ Health A ; 84(1): 31-48, 2021 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-33050837

RESUMO

Thousands of abandoned uranium mines (AUMs) exist in the western United States. Due to improper remediation, windblown dusts generated from AUMs are of significant community concern. A mobile inhalation lab was sited near an AUM of high community concern ("Claim 28") with three primary objectives: to (1) determine the composition of the regional ambient particulate matter (PM), (2) assess meteorological characteristics (wind speed and direction), and (3) assess immunological and physiological responses of mice after exposures to concentrated ambient PM (or CAPs). C57BL/6 and apolipoprotein E-null (ApoE-/-) mice were exposed to CAPs in AirCARE1 located approximately 1 km to the SW of Claim 28, for 1 or 28 days for 4 hr/day at approximately 80 µg/m3 CAPs. Bronchoalveolar lavage fluid (BALF) analysis revealed a significant influx of neutrophils after a single-day exposure in C57BL/6 mice (average PM2.5 concentration = 68 µg/m3). Lungs from mice exposed for 1 day exhibited modest increases in Tnfa and Tgfb mRNA levels in the CAPs exposure group compared to filtered air (FA). Lungs from mice exposed for 28 days exhibited reduced Tgfb (C57BL/6) and Tnfa (ApoE-/-) mRNA levels. Wind direction was typically moving from SW to NE (away from the community) and, while detectable in all samples, uranium concentrations in the PM2.5 fraction were not markedly different from published-reported values. Overall, exposure to CAPs in the region of the Blue GAP Tachee's Claim-28 uranium mine demonstrated little evidence of overt pulmonary injury or inflammation or ambient air contamination attributed to uranium or vanadium.


Assuntos
Poluentes Atmosféricos/toxicidade , Exposição por Inalação/efeitos adversos , Mineração , Material Particulado/toxicidade , Urânio , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Testes de Toxicidade Aguda , Testes de Toxicidade Subcrônica
11.
Environ Health Perspect ; 128(11): 117009, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33253011

RESUMO

BACKGROUND: Epidemiological studies support the hypothesis that diabetes alters pulmonary responses to air pollutants like ozone (O3). The mechanism(s) underlying these associations and potential links among diabetes, O3, and lung inflammation and remodeling are currently unknown. OBJECTIVES: The goal was to determine whether pulmonary responses to repetitive ozone exposures are exacerbated in murine strains that are hyperglycemic and insulin resistant. METHODS: Normoglycemic and insulin-sensitive C57BL/6J mice; hyperglycemic, but mildly insulin-resistant, KK mice; and hyperglycemic and markedly insulin-resistant KKAy mice were used for ozone exposure studies. All animals were exposed to filtered air (FA) or repetitive ozone (0.5 ppm O3, 4 h/d, for 13 consecutive weekdays). Tissue analysis was performed 24 h following the final exposure. This analysis included bronchoalveolar lavage (BAL) for cell and fluid analysis, and tissue for pathology, immunohistology, mRNA, and hydroxyproline. RESULTS: Following repetitive O3 exposure, higher bronchoalveolar lavage fluid inflammatory cells were observed in all mice (KKAy>KK>C57BL/6), with a notable influx of neutrophils and eosinophils in KK and KKAy mice. Although the lungs of O3-exposed C57BL/6J and KK mice had minimal centriacinar histological changes without fibrosis, the lungs of O3-exposed KKAy mice contained marked epithelial hyperplasia in proximal alveolar ducts and adjacent alveoli with associated centriacinar fibrosis. Fibrosis in O3-exposed KKAy lungs was confirmed with immunohistochemistry, tissue hydroxyproline content, and tissue mRNA expression of fibrosis-associated genes (Ccl11, Il13, and Mmp12). Immunofluorescence staining and confocal microscopy revealed alterations in the structure and composition of the airway and alveolar epithelium in regions of fibrosis. DISCUSSION: Our results demonstrate that in diabetic animal strains repetitive ambient ozone exposure led to early and exaggerated pulmonary inflammation and remodeling. Changes in distal and interstitial airspaces and the activation of Th2 inflammatory and profibrotic pathways in experimental animals provide a preliminary, mechanistic framework to support the emerging epidemiological associations among air pollution, diabetes, and lung disease. https://doi.org/10.1289/EHP7255.


Assuntos
Poluentes Atmosféricos/toxicidade , Ozônio/toxicidade , Pneumonia/induzido quimicamente , Animais , Líquido da Lavagem Broncoalveolar , Diabetes Mellitus Experimental , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos , Pneumonia/veterinária , Testes de Toxicidade
12.
Toxicol Pathol ; 48(7): 875-886, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32975493

RESUMO

Rats repeatedly exposed to high airborne concentrations of ethylene develop eosinophilic rhinitis and mucous cell hyperplasia/hypertrophy (MCH) in nasal respiratory epithelium. Mechanisms underlying these lesions are not well understood to inform occupational exposure guidelines. In this study, we determined (1) the nasal histopathology in rats episodically exposed to ethylene, (2) the ethylene-induced nasal histopathology in similarly exposed mice, and (3) how innate lymphoid cells (ILCs) play a role in ethylene-induced MCH. Animals were exposed to 0 or 10,000 ppm ethylene, 6 h/d, 5 d/wk, for 2 weeks and sacrificed 1 day or 2 weeks postexposure. Others received three 2-week exposure blocks separated by 2-week intervals of no exposure. Episodic exposure was chosen to aid in distinguishing irritant from immune responses. Mucous cell hyperplasia/hypertrophy was induced by ethylene in both species. Rats developed a mild, but transient, eosinophilic rhinitis. Mucous cell hyperplasia/hypertrophy was transient in mice, but persistent in rats. Increases in epithelial mucosubstances after 2 weeks of exposure were only present in ILC-sufficient mice, but not in ILC-deficient mice suggesting that ILCs play a role in MCH and overexpression of genes associated with mucus production/secretion. These findings in animals suggest that inhaled ethylene does not act as a sensitizing agent and will not induce allergen-like nasal airway disease.


Assuntos
Exposição por Inalação , Rinite , Animais , Etilenos , Imunidade Inata , Exposição por Inalação/efeitos adversos , Linfócitos , Camundongos , Ratos , Ratos Endogâmicos F344 , Rinite/induzido quimicamente
13.
Part Fibre Toxicol ; 17(1): 29, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32611356

RESUMO

BACKGROUND: Commercial uranium mining on the Navajo Nation has subjected communities on tribal lands in the Southwestern United States to exposures from residual environmental contamination. Vascular health effects from these ongoing exposures are an active area of study. There is an association between residential mine-site proximity and circulating biomarkers in residents, however, the contribution of mine-site derived wind-blown dusts on vascular and other health outcomes is unknown. To assess neurovascular effects of mine-site derived dusts, we exposed mice using a novel exposure paradigm, the AirCARE1 mobile inhalation laboratory, located 2 km from an abandoned uranium mine, Claim 28 in Blue Gap Tachee, AZ. Mice were exposed to filtered air (FA) (n = 6) or concentrated ambient particulate matter (CAPs) (n = 5) for 2 wks for 4 h per day. RESULTS: To assess miRNA differential expression in cultured mouse cerebrovascular cells following particulate matter (PM) exposure (average: 96.6 ± 60.4 µg/m3 for all 4 h exposures), the serum cumulative inflammatory potential (SCIP) assay was employed. MiRNA sequencing was then performed in cultured mouse cerebrovascular endothelial cells (mCECs) to evaluate transcriptional changes. Results indicated 27 highly differentially expressed (p < 0.01) murine miRNAs, as measured in the SCIP assay. Gene ontology (GO) pathway analysis revealed notable alterations in GO enrichment related to the cytoplasm, protein binding and the cytosol, while significant KEGG pathways involved pathways in cancer, axon guidance and Wnt signaling. Expression of these 27 identified, differentially expressed murine miRNAs were then evaluated in the serum. Nine of these miRNAs (~ 30%) were significantly altered in the serum and 8 of those miRNAs demonstrated the same directional change (either upregulation or downregulation) as cellular miRNAs, as measured in the SCIP assay. Significantly upregulated miRNAs in the CAPs exposure group included miRNAs in the let-7a family. Overexpression of mmu-let-7a via transfection experiments, suggested that this miRNA may mediate mCEC barrier integrity following dust exposure. CONCLUSIONS: Our data suggest that mCEC miRNAs as measured in the SCIP assay show similarity to serum-borne miRNAs, as approximately 30% of highly differentially expressed cellular miRNAs in the SCIP assay were also found in the serum. While translocation of miRNAs via exosomes or an alternative mechanism is certainly possible, other yet-to-be-identified factors in the serum may be responsible for significant miRNA differential expression in endothelium following inhaled exposures. Additionally, the most highly upregulated murine miRNAs in the CAPs exposure group were in the let-7a family. These miRNAs play a prominent role in cell growth and differentiation and based on our transfection experiments, mmu-let-7a may contribute to cerebrovascular mCEC alterations following inhaled dust exposure.


Assuntos
Poluentes Atmosféricos/toxicidade , Material Particulado/toxicidade , Animais , Biomarcadores/sangue , Diferenciação Celular , Proliferação de Células , Endotélio , Exposição por Inalação , Camundongos , MicroRNAs , Sudoeste dos Estados Unidos , Urânio
14.
Inhal Toxicol ; 32(6): 265-277, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32571132

RESUMO

Background: Inhalation exposure to biological particulate matter (BioPM) from livestock farms may provoke exacerbations in subjects suffering from allergy and asthma. The aim of this study was to use a murine model of allergic asthma to determine the effect of BioPM derived from goat farm on airway allergic responses.Methods: Fine (<2.5 µm) BioPM was collected from an indoor goat stable. Female BALB/c mice were ovalbumin (OVA) sensitized and challenged with OVA or saline as control. The OVA and saline groups were divided in sub-groups and exposed intranasally to different concentrations (0, 0.9, 3, or 9 µg) of goat farm BioPM. Bronchoalveolar lavage fluid (BALF), blood and lung tissues were collected.Results: In saline-challenged mice, goat farm BioPM induced 1) a dose-dependent increase in neutrophils in BALF and 2) production of macrophage inflammatory protein-3a. In OVA-challenged mice, BioPM induced 1) inflammatory cells in BALF, 2) OVA-specific Immunoglobulin (Ig)G1, 3) airway mucus secretion-specific gene expression. RNAseq analysis of lungs indicates that neutrophil chemotaxis and oxidation-reduction processes were the representative genomic pathways in saline and OVA-challenged mice, respectively.Conclusions: A single exposure to goat farm BioPM enhanced airway inflammation in both saline and OVA-challenged allergic mice, with neutrophilic response as Th17 disorder and eosinophilic response as Th2 disorder indicative of the severity of allergic responses. Identification of the mode of action by which farm PM interacts with airway allergic pathways will be useful to design potential therapeutic approaches.


Assuntos
Poluentes Atmosféricos/toxicidade , Asma , Cabras , Material Particulado/toxicidade , Doença Aguda , Alérgenos , Animais , Asma/genética , Asma/imunologia , Asma/patologia , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Citocinas/imunologia , Eosinófilos/imunologia , Fazendas , Feminino , Imunoglobulina E/sangue , Imunoglobulina G/sangue , Pulmão/imunologia , Pulmão/patologia , Camundongos Endogâmicos BALB C , Neutrófilos/imunologia , Ovalbumina , Transcriptoma
15.
PLoS One ; 15(5): e0233183, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32413078

RESUMO

Lupus is a debilitating multi-organ autoimmune disease clinically typified by periods of flare and remission. Exposing lupus-prone female NZBWF1 mice to crystalline silica (cSiO2), a known human autoimmune trigger, mimics flaring by inducing interferon-related gene (IRG) expression, inflammation, ectopic lymphoid structure (ELS) development, and autoantibody production in the lung that collectively accelerate glomerulonephritis. cSiO2-triggered flaring in this model can be prevented by supplementing mouse diet with the ω-3 polyunsaturated fatty acid (PUFA) docosahexaenoic acid (DHA). A limitation of previous studies was the use of purified diet that, although optimized for rodent health, does not reflect the high American intake of saturated fatty acid (SFA), ω-6 PUFAs, and total fat. To address this, we employed here a modified Total Western Diet (mTWD) emulating the 50th percentile U.S. macronutrient distribution to discern how DHA supplementation and/or SFA and ω-6 reduction influences cSiO2-triggered lupus flaring in female NZBWF1 mice. Six-week-old mice were fed isocaloric experimental diets for 2 wks, intranasally instilled with cSiO2 or saline vehicle weekly for 4 wks, and tissues assessed for lupus endpoints 11 wks following cSiO2 instillation. In mice fed basal mTWD, cSiO2 induced robust IRG expression, proinflammatory cytokine and chemokine elevation, leukocyte infiltration, ELS neogenesis, and autoantibody production in the lung, as well as early kidney nephritis onset compared to vehicle-treated mice fed mTWD. Consumption of mTWD containing DHA at the caloric equivalent to a human dose of 5 g/day dramatically suppressed induction of all lupus-associated endpoints. While decreasing SFA and ω-6 in mTWD modestly inhibited some disease markers, DHA addition to this diet was required for maximal protection against lupus development. Taken together, DHA supplementation at a translationally relevant dose was highly effective in preventing cSiO2-triggered lupus flaring in NZBWF1 mice, even against the background of a typical Western diet.


Assuntos
Dieta Ocidental/efeitos adversos , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-6/farmacologia , Lúpus Eritematoso Sistêmico/dietoterapia , Dióxido de Silício/toxicidade , Animais , Linfócitos B/imunologia , Citocinas/metabolismo , Suplementos Nutricionais , Modelos Animais de Doenças , Ácidos Graxos/farmacologia , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-6/metabolismo , Feminino , Glomerulonefrite/dietoterapia , Glomerulonefrite/metabolismo , Glomerulonefrite/patologia , Inflamação/imunologia , Interferon gama/metabolismo , Rim/metabolismo , Rim/patologia , Pulmão/metabolismo , Pulmão/patologia , Lúpus Eritematoso Sistêmico/induzido quimicamente , Camundongos , Linfócitos T/imunologia
16.
World Allergy Organ J ; 13(4): 100114, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32256941

RESUMO

Effects of airborne biological particulate matter (BioPM; from livestock farms) on the pulmonary airways are not well studied. The aim of the present study was to investigate whether fine (<2.5 µm) BioPM derived from indoor animal stables (two chicken and two pig farms) could modify airway allergic responses by using a mouse model of allergic airway disease (allergic asthma). After intraperitoneal ovalbumin (OVA) sensitization mice were either intranasally challenged with OVA (allergic mice) or saline (non-allergic controls). Mice were also intranasally treated with farm-derived BioPM. Bronchoalveolar lavage fluid (BALF), blood and lung tissues were collected one day after intranasal exposure. BioPM from all the farms caused an acute neutrophilic inflammatory response in non-allergic mice. In allergic mice, BioPM derived from pig farm 2 induced a larger cellular inflammatory response than other farm-derived BioPM. All farm BioPM elicited Th17 cytokine (Interleukin (IL)-23) production except chicken farm 2, whereas Th2 cytokine (IL-5) increase was only induced by BioPM collected from chicken farm 2. These results indicate the exposure of BioPM from chicken and pig farms may cause the enhancement of airway allergic response in mice following exposure to OVA. More variation in the responses between farms was observed in allergic than non-allergic mice. Understanding the source and doses of BioPM that may affect the airway allergic response could help susceptible individuals to avoid worsening their respiratory diseases.

17.
Toxicol Pathol ; 48(2): 323-337, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31729279

RESUMO

Mice exposed to the air pollutant ozone develop eosinophilic rhinitis that is mediated by group 2, GATA-3+, innate lymphoid cells (ILC2s). In the present study, we determined the influx, persistence, and recall of nasal ILC2s and eosinophils in ozone-exposed mice. C57BL/6 (T/B cell sufficient, ILC sufficient), Rag2-/- (T/B cell deficient, ILC sufficient), and Rag2-/-Il2rg-/- (T/B cell deficient, ILC deficient) mice were exposed to 0 or 0.8 ppm ozone for 1 or 9 weekdays and killed 1 or 17 days postexposure. GATA-3+ lymphocytes were sparse in nasal tissue of air-exposed ILC-sufficient mice and absent in ILC-deficient mice. Nine-day, but not 1-day, ozone exposures induced nasal influxes of eosinophils and GATA-3+ lymphocytes in C57BL/6 and Rag2-/- mice but not in Rag2-/-Il2rg-/- mice. Eosinophils waned 17 days postexposure in ILC-sufficient strains of mice. GATA-3+ lymphocytes in C57BL/6 mice also attenuated after exposure but not in ILC-sufficient Rag2-/- mice. Eosinophils, but not GATA-3+ cells, increased rapidly with reexposure in ILC-sufficient mice. Type 2 immune-related messenger RNA expression correlated with cellular responses to ozone. These new findings in mice further elucidate the role of ILC2s in ozone-induced eosinophilic rhinitis and support epidemiologic associations between ozone exposure and eosinophilic inflammation in children.


Assuntos
Poluentes Atmosféricos/toxicidade , Eosinófilos/imunologia , Linfócitos/imunologia , Mucosa Nasal/efeitos dos fármacos , Ozônio/toxicidade , Animais , Fator de Transcrição GATA3 , Linfócitos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mucosa Nasal/imunologia , Oxidantes Fotoquímicos/toxicidade , Rinite/induzido quimicamente , Rinite/imunologia
18.
Part Fibre Toxicol ; 16(1): 39, 2019 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-31660999

RESUMO

BACKGROUND: Engineered nanoparticles (NPs) have been shown to enhance allergic airways disease in mice. However, the influence of the different physicochemical properties of these particles on their adjuvant properties is largely unknown. Here we investigate the effects of chemical composition and redox activity of poorly soluble NPs on their adjuvant potency in a mouse model of airway hypersensitivity. RESULTS: NPs of roughly similar sizes with different chemical composition and redox activity, including CeO2, Zr-doped CeO2, Co3O4, Fe-doped Co3O4(using Fe2O3 or Fe3O4) and TiO2 NPs, all showed adjuvant activity. OVA induced immune responses following intranasal exposure of BALB/c mice to 0.02% OVA in combination with 200 µg NPs during sensitization (on day 1, 3, 6 and 8) and 0.5% OVA only during challenge (day 22, 23 and 24) were more pronounced compared to the same OVA treatment regime without NPs. Changes in OVA-specific IgE and IgG1 plasma levels, differential cell count and cytokines in bronchoalveolar lavage fluid (BALF), and histopathological detection of mucosa cell metaplasia and eosinophil density in the conducting airways were observed. Adjuvant activity of the CeO2 NPs was primarily mediated via the Th2 response, while that of the Co3O4 NPs was characterised by no or less marked increases in IgE plasma levels, BALF IL-4 and IL-5 concentrations and percentages of eosinophils in BALF and more pronounced increases in BALF IL-6 concentrations and percentages of lymphocytes in BALF. Co-exposure to Co3O4 NPs with OVA and subsequent OVA challenge also induced perivascular and peribronchiolar lymphoid cell accumulation and formation of ectopic lymphoid tissue in lungs. Responses to OVA combined with various NPs were not affected by the amount of doping or redox activity of the NPs. CONCLUSIONS: The findings indicate that chemical composition of NPs influences both the relative potency of NPs to exacerbate allergic airway sensitization and the type of immune response. However, no relation between the acellular redox activity and the observed adjuvant activity of the different NPs was found. Further research is needed to pinpoint the precise physiological properties of NPs and biological mechanisms determining adjuvant activity in order to facilitate a safe-by-design approach to NP development.


Assuntos
Pulmão/efeitos dos fármacos , Nanoestruturas/química , Nanoestruturas/toxicidade , Hipersensibilidade Respiratória/induzido quimicamente , Administração Intranasal , Animais , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/imunologia , Imunoglobulina E/sangue , Imunoglobulina G/sangue , Interleucinas/análise , Pulmão/imunologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina/imunologia , Oxirredução , Hipersensibilidade Respiratória/sangue , Hipersensibilidade Respiratória/imunologia , Hipersensibilidade Respiratória/patologia , Solubilidade
19.
Toxicol Pathol ; 47(8): 993-1003, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31537180

RESUMO

Epidemiological associations have been made between the new onset of childhood rhinitis/asthma and exposures to elevated ambient levels of ozone, a commonly encountered gaseous air pollutant. Our laboratory was the first to find that mice repeatedly exposed to ozone develop nasal type 2 immunity and eosinophilic rhinitis with mucous cell metaplasia. More recently, we have found that these ozone-induced upper airway alterations are mediated by group 2 innate lymphoid cells (ILC2s) and not by T and B cells that are important in adaptive immune responses typically associated with allergic rhinitis and asthma. Furthermore, repeated exposures of mice to ozone cause ILC2-mediated type 2 immunity and airway pathology in the lungs, like those found in the nasal airways. Our recent findings in ozone-exposed mice complement and extend previous reports of nonallergic nasal airway disease in ozone-exposed rats and nonhuman primates. Overall, these experimental results in laboratory animals suggest a plausible ILC2-dependent paradigm for the toxicologic pathobiology that underlies the development of nonallergic rhinitis/asthma in children who live in environments with repeated occurrences of high ambient concentrations of ozone.


Assuntos
Poluentes Atmosféricos/toxicidade , Imunidade Inata/efeitos dos fármacos , Exposição por Inalação/efeitos adversos , Linfócitos/efeitos dos fármacos , Ozônio/toxicidade , Mucosa Respiratória/efeitos dos fármacos , Animais , Humanos , Linfócitos/imunologia , Linfócitos/patologia , Metaplasia , Mucosa Respiratória/imunologia , Mucosa Respiratória/patologia , Doenças Respiratórias/induzido quimicamente , Doenças Respiratórias/imunologia , Doenças Respiratórias/patologia , Especificidade da Espécie
20.
Front Immunol ; 9: 2002, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30258439

RESUMO

Ectopic lymphoid structures (ELS) consist of B-cell and T-cell aggregates that are initiated de novo in inflamed tissues outside of secondary lymphoid organs. When organized within follicular dendritic cell (FDC) networks, ELS contain functional germinal centers that can yield autoantibody-secreting plasma cells and promote autoimmune disease. Intranasal instillation of lupus-prone mice with crystalline silica (cSiO2), a respirable particle linked to human lupus, triggers ELS formation in the lung, systemic autoantibodies, and early onset of glomerulonephritis. Here we tested the hypothesis that consumption of docosahexaenoic acid (DHA), an ω-3 polyunsaturated fatty acid with anti-inflammatory properties, influences the temporal profile of cSiO2-induced pulmonary ectopic germinal center formation and development of glomerulonephritis. Female NZBWF1 mice (6-wk old) were fed purified isocaloric diets supplemented with 0, 4, or 10 g/kg DHA - calorically equivalent to 0, 2, or 5 g DHA per day consumption by humans, respectively. Beginning at age 8 wk, mice were intranasally instilled with 1 mg cSiO2, or saline vehicle alone, once per wk, for 4 wk. Cohorts were sacrificed 1, 5, 9, or 13 wk post-instillation (PI) of the last cSiO2 dose, and lung and kidney lesions were investigated by histopathology. Tissue fatty acid analyses confirmed uniform dose-dependent DHA incorporation across all cohorts. As early as 1 wk PI, inflammation comprising of B (CD45R+) and T (CD3+) cell accumulation was observed in lungs of cSiO2-treated mice compared to vehicle controls; these responses intensified over time. Marked follicular dendritic cell (FDC; CD21+/CD35+) networking appeared at 9 and 13 wk PI. IgG+ plasma cells suggestive of mature germinal centers were evident at 13 wk. DHA supplementation dramatically suppressed cSiO2-triggered B-cell, T-cell, FDC, and IgG+ plasma cell appearance in the lungs as well as anti-dsDNA IgG in bronchial lavage fluid and plasma over the course of the experiment. cSiO2 induced glomerulonephritis with concomitant B-cell accumulation in the renal cortex at 13 wk PI but this response was abrogated by DHA feeding. Taken together, realistic dietary DHA supplementation prevented initiation and/or progression of ectopic lymphoid neogenesis, germinal center development, systemic autoantibody elevation, and resultant glomerulonephritis in this unique preclinical model of environment-triggered lupus.


Assuntos
Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos/farmacologia , Centro Germinativo , Glomerulonefrite , Pulmão , Lúpus Eritematoso Sistêmico , Dióxido de Silício/toxicidade , Animais , Feminino , Centro Germinativo/imunologia , Centro Germinativo/patologia , Glomerulonefrite/induzido quimicamente , Glomerulonefrite/imunologia , Glomerulonefrite/patologia , Glomerulonefrite/prevenção & controle , Pulmão/imunologia , Pulmão/patologia , Lúpus Eritematoso Sistêmico/induzido quimicamente , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/patologia , Lúpus Eritematoso Sistêmico/prevenção & controle , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...